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Harmonic Perturbations in Turbulent Wakes
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A theoretical model of harmonic perturbations in far turbulent wakes is considered. The proposed model is
based on the triple decomposition method. It is assumed that the instantaneous velocities and pressures consist
of three distinctive components: the mean (time-averaged), the coherent (phase-averaged), and the random (tur-
bulent) motion. The interaction between incoherent turbulent � uctuations and large-scale coherent disturbances
is incorporated by means of a Newtonian eddy viscosity model. For high-amplitude perturbations, the nonlinear
feedback to the mean � ow is taken into account by means of the coherent Reynolds stresses. The equations for
the mean � ow are coupled with the linearized equations for the disturbances, taking into account the mean � ow
nonparallel effects. The model resolves uncertainties noted in previous theories and provides a correct comparison
with available experimental data. The effect of the harmonic perturbations on the turbulent wake growth at high
amplitudes is investigated as well.

Nomenclature
A = vector function of the direct problem
a.X / = slow amplitude function of the coherent

perturbation
B = vector function of the adjoint problem
f = frequency, Hz
G = growth parameter, L0U1=µu0

H1; H10; H11; = matrices 4 £ 4
H2 , H3

L0 = half-width of the wake
p = instantaneouspressure
Re = Reynolds number, U1µ=ºt

t = time
U = mean (time-averaged) streamwise velocity
U 0 = @U=@y
U1 = freestream velocity
u = instantaneousstreamwise velocity
u0 = centerline velocity de� cit
V = mean (time-averaged) vertical

velocity component
V0 = "¡1V
v = instantaneousvertical velocity
X = slow variable, "x
x = streamwise coordinate
Nx = dimensionless coordinate, x=2µ
y = vertical coordinate
z = spanwise coordinate
® = wave number of the coherent perturbation
" = small parameter characterizing

the � ow divergence
"0 = amplitude parameter, Qvmax=U1
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´ = dimensionless coordinate, y=L0

µ = momentum thickness
ºt = eddy viscosity of the undisturbed � ow
! = frequency of the coherent perturbation

Q = coherent (phase-averaged) contribution
0 = random contribution
h i = phase averaging
¡ = time averaging
¤ = Hermitian adjoint matrix

Subscripts

i; j = coordinates x; y
max = maximum value of the coherent component

at speci� c coordinate x

Introduction

S TUDIES of large organized motions in turbulent � ows have a
long history and demonstrate that large-scalevortices originate

from � ow instabilities and that excitation of time-periodic large
coherent structures in turbulent shear � ows may serve as a method
of � ow control. Flow instabilities may cause small disturbances to
be ampli� ed and, in turn, provide feedback to the basic � ow. A
detailed discussion of this phenomena and a related bibliography
are given by Ho and Huerre.1

Experiments with harmonic perturbations introduced into turbu-
lent mixing layers and wakes revealed that the � ows are highly
susceptible to the disturbances.2¡8 The link between the perturba-
tion dynamics and stability theory has been demonstratedby Gaster
et al.3 (mixing layer), Wygnanskiet al.,4 Cimbala et al.,8 andMarasli
et al.6 (far wake � ow).

The triple decomposition method, where the instantaneous ve-
locities and pressure are considered as sums of three distinctive
components,mean (time-averaged), coherent(phase-averaged), and
random (incoherent turbulent) motion, is an appropriatemethod for
analyzing a coherent signal in a turbulent � ow. The equations for a
coherent signal in a turbulent � ow were derived by Reynolds and
Hussain9 and contain new unknown terms that correspond to oscil-
lationsof the backgroundReynoldsstressescausedby the organized
wave. These terms re� ect the existence of an interaction between
the coherent signal and the random � eld. As a � rst approximation,
the interactionmay be neglected,and the linearizedproblemmay be
reduced to the Rayleigh equation with a prescribed mean velocity
pro� le (the effectofmolecularviscosityis consideredas negligible).

Inasmuch as free shear � ows (such as jets, wakes, and mixing
layers) spread rapidly, it is necessary to take into account the � ow
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divergencefor a correctcomparisonof theoreticaland experimental
data for growth rates and overall ampli� cation. Gaster et al.3 carried
out an analysis of coherent perturbations in a mixing layer within
the scope of the Rayleigh equation. They included � ow divergence
in an attempt to predict the overall growth. Nevertheless, the theory
overpredicted the ampli� cation by two- to threefold.

Marasli et al.6 emulated the interactionbetween the coherentper-
turbation and the turbulent wake � eld via the introduction of eddy
viscosityand considerationof the Orr–Summer� eld equationfor the
coherent signal. Flow divergenceeffects were taken into account as
well. The analysis in both the aforementioned theoretical models
was based on the mean � ow velocitypro� le that was obtained as an
approximation to the experimental data.

It follows from the experiments that the nonlinear effect of the
feedback from the disturbances to the mean � ow might be very
signi� cant, and a self-consistent theory has to take it into account.
Cohen et al.10 considered the feedback from harmonic perturba-
tions to the mean � ow of a mixing layer. The theoreticalmodel was
basedon a so-calledquasi-parallelapproach.The Reynoldsstressof
the coherent signal was calculated using a solution of the Rayleigh
equation, and the disturbance amplitude was calculated in accor-
dance with the growth rate obtained from the Rayleigh equation.
Because the self-similarvelocitypro� le was obtainedas an approx-
imation to the experimental data,3 it was necessary to � nd only
the mixing layer thickness as a function of the downstream coordi-
nate. The equation for the mixing layer scale follows from the inte-
gral momentum equation, where the spreading rate is governed by
the coherent Reynolds stresses. The results10 showed an agreement
between the theoretical and experimental data.3

Marasli et al.11 applied the same approach to the analysis of the
feedback from a coherent signal to the mean � ow of a turbulent
wake. The main difference involved taking into consideration the
interactionof thecoherentsignaland turbulencebymeansof an eddy
viscositymodel. The theoretical results11 also showed an agreement
with experimentaldata.6 However, one should keep in mind that the
quasi-parallel approach suffers from an ambiguity of the linear so-
lution normalization.The solution of the Orr–Sommerfeld equation
(and the Rayleigh equation) depends on the downstream coordi-
nate as a parameter, and an undetermined complex function of the
downstream coordinate appears. It must be de� ned in some way
or another. The normalization of the eigenfunction in� uences the
resulting level of the Reynolds stresses, as well as the � nal com-
parisonof the theory with the experimentaldata. The normalization
adopted in the aforementioned papers10;11 was not stated. Accord-
ing to J. Cohen and V. Levinski (private communication,1997), the
value of the disturbance stream function at the centerline was used
to normalize the eigenfunctionsof the linear problem.

Becausethe divergenceof the mean � ow is taken into account, the
uncertainty in the eigenfunction normalization becomes resolved.
Reau and Tumin12 proposed a model for the analysis of a coher-
ent signal in a turbulent mixing layer. A Newtonian eddy viscosity
model was used to incorporate the interaction between incoher-
ent turbulent � uctuationsand large-scalecoherentdisturbances.For
high-amplitude perturbations, the nonlinear feedback to the mean
� ow was taken into account by means of the coherent Reynolds
stresses,and the � ow divergencewas taken into accountas well. The
result demonstratedagreementwith availableexperimentaldata and
revealed the possibility of a negative spreading rate of the mixing
layer, as observed in the experiments of Weisbrot and Wygnanski.5

The objective of the present work is to apply the proposed
method12 to the analysisof a coherent signal in far turbulent wakes.

Governing Equations
It is assumed that the instantaneousvalue of a parameterq(x , y, z,

t ) (velocitiesand pressure) consistsof the three distinctcomponents

q.x; y; z; t/ D Q.x; y/ C Qq.x; y; t/ C q 0.x; y; z; t/ (1)

where Q is themean (time-averaged)value, Qq is thecoherent(phase-
averaged) contribution of the organized wave, and q 0 stands for
the random (turbulent) motion. After substituting Eq. (1) into the
Navier–Stokes equations and phase and time averaging, the equa-
tions for the mean � ow and the organized wave can be obtained.9

We assume that the effects of molecular viscosity are negligible.
The boundary-layer approximation is assumed for the mean-� ow
equation, and we invoke closure by means of the eddy viscosity ºt :

u 0v 0 D ¡ºt
@U

@y
(2)

where the overbar stands for the mean (time-averaged) value.
The mean-� ow equations are written in conventional notation as

follows:

@U

@x
C

@V

@y
D 0 (3a)

U
@U

@x
C V

@U

@y
D ¡ @ Qu Qv

@y
¡ @ Qu2

@x
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@2U

@y2
(3b)

Equation (3b) contains coherent Reynolds stresses and, there-
fore, there is a possibility for feedback from the coherent signal
to the mean � ow. To solve Eqs. (3a) and (3b), we need to de-
� ne a velocity pro� le U .x0; y/ at x D x0 and boundary conditions
at y ! §1.U ! U1/. Although we consider a small-de� cit far
wake, we do not linearize the momentum equation because we
want to utilize the solver developed for the mixing layer problem in
Ref. 12.

The equations for the organized waves contain the new terms9

Qri j D hu0
i u

0
j i ¡ u 0

i u
0
j (4)

The new terms represent oscillations of the incoherent Reynolds
stresses caused by the organizedwave. They are responsible for the
interactionof a coherentsignalwith the random� eld. Becauseof the
latter terms, we need to invoke an hypothesis to close the equations.
If we assume that Qri j D 0, the linearized equations for organized
waves are reduced to the Rayleigh equation. According to Ref. 9,
we adopt the Newtonian eddy viscosity model

Qri j D ¡ºt

³
@ Qui

@ x j
C

@ Qu j

@xi

´
(5)

Making use of Eq. (5), we obtain equations for a coherent signal. In
linearized form, they are written as follows:
@ Qu
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C @ Qv
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D 0 (6a)
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Equations (6a–6c) should be completedby the boundary conditions
at y ! §1 . Qu; Qv; Qp ! 0/.

Linear Analysis: Slowly Diverging Flow
In what follows, we use the momentum thickness µ as the length

scale and U1 as the velocity scale.We introduce the vector function

A D

­­­­­­­­­­

Qu
Qp
Qv

@ Qu
@y

¡ @ Qv
@ x

­­­­­­­­­­

(7)

and rewrite Eq. (6) in the following form:

@A
@y

C H10
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@t

D H11A C H2
@A
@ x

C "H3 A (8)
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where the matrix H3 is associated with the terms that originated
from a slow divergence of the mean � ow,

H10 D

0

BB@

0 0 0 0

0 0 1 0

0 0 0 0

¡Re 0 0 0

1

CCA; H11 D

0

BB@

0 0 0 1
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0 0 0 0

0 0 U 0 Re 0

1

CCA

H2 D

0

BB@
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¡1 0 0 0
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1
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0
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@
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0
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@ X
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@
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1

CCCCCCA
(9)

where a slowvariable X D "x appears in H3 , componentV0 D "¡1V ,
and velocity U DU .X; y/.

We are looking for a solution of the form

A.x; X; y; t/ D exp

"
i

Z x

x0

® dx ¡ i!t

#
fa.X/A1.X; y/

C "A2.X; y/ C ¢ ¢ ¢g (10)

To leading orders of ", we obtain the conventional system of linear
stability theory:

@A1

@y
D H1 A1 C i®H2 A1 (11)

where H1 D H11 C i!H10 . We must complete the equationswith the
boundaryconditionsof the decayingsolution at y ! §1. The sys-
tem (11) may be reduced to the Orr–Sommerfeld equation for the
third component of the vector A1 . The coef� cients in Eq. (11) are
slow functions of the variable X , and the problem of consistentnor-
malization for the quasi-parallel solution A1 arises. The ambiguity
is resolved through considerationof the next-order equations.

In the next order, we have an inhomogeneous system:

@A2

@y
¡ H1 A2 ¡ i®H2 A2 D

da

dX
H2 A1 C a H2

@A1

@ X
C aH3 A1 (12)

The solvabilityconditionof the system(12)will be theorthogonality
of the right-hand side to the solution B of the adjoint problem:

¡ @B
@y

D H ¤
1 B ¡ i N®H ¤

2 B (13)

with the boundary conditions of the decaying solution at y ! §1.
The overbar in Eq. (13) stands for the complex conjugate.We write
the solvability condition for Eq. (12) in the following form:

da

dX
D ¡a

N .X/

M.X /
; M.X / D

Z C1

¡1
.H2 A1; B/ dy

N .X / D
Z C1

¡1

³
H2

@A1

@ X
; B

´
dy C

Z C1

¡1
.H3 A1; B/ dy

(14)

One can show that a.X/ A1.X; y/ is independent of a speci� c nor-
malizationof A1.X; y/ at different locationsof X . This is one reason
why we must take the � ow divergence into account. The system of
equations (3), (11), and (14) was solved numerically.

Results and Discussion
In this section we present comparisonsof experimental data6;7;11

with the proposedtheoreticalmodel.For all cases, the initialvelocity
pro� le and the disturbanceamplitude are de� ned at Nx D x=2µ D 60.
The Reynolds number Re, based on the momentum thickness µ , the
freestream velocity U1 , and the eddy viscosity, is equal to 31. The
eddyviscosityºt is estimatedfrom theexperimentaldataas 5 £ 10¡4

m2/s (see Ref. 6).
Measurementsof the unforced� ow4 showed that, far froma wake

generator, the mean � ow reaches its self-preserving state with a
velocity pro� le of the form (for more physical details of the self-
preserving state see Refs. 13–15)

U .x; ´/ D U1 ¡ u0.x/h.´/ (15)

The following approximation of the function h.´/ has been
suggested6:

h.´/ D sech2.0:78´ C 0:101´3/

It follows from the experiments that the velocity de� cit and the
wake half-width are described by the equations

.U1=u0/2 D
¡
2
¯

W 2
0 Nx

¢
; .L0=µ/2 D

¡
212

0 Nx
¢

where W0 and 10 are constants. For the wake behind a � at plate,
W0 D 1:676 and 10 D 0:2995. The velocity pro� le (15) was used as
the initial data in the solution of Eqs. (3a) and (3b).

Results for the unforced case and their comparisons with the
approximation of the experimental data are given in Fig. 1 (the
numerical methods are described in the Appendix). As shown, the
theoretical mean velocity pro� le is self-similar, as observed in the
experiments. The theory slightly underpredicts the coef� cient W0

and overpredicts10 .
Marasli et al.6 introduced the growth parameter G given by

G D L0U1=µu0 D .210=W0/ Nx

which characterizesspreadingof the mean � ow. Figure 1 also shows
the theoretical growth of the parameter G . The slight discrepancy
between theoretical results and the approximatedexperimentaldata
might be caused by the effect of the initial conditions, which were
de� ned by Eq. (15) and are not accurate at Nx D 60.

In the following analysis of perturbations, we restrict ourselves
to the sinuous mode only. Figure 2 shows the results for the wake
subjectedto low-amplitude,"0 D 1%, disturbancesat a frequencyof
40 Hz. We de� ne the amplitudeof the disturbanceas "0 D Qvmax=U1.
(Note that in the experiments6;7;11 it was de� ned as Qumax=u0:/ One
can see that the effect of the coherentsignalon the growthparameter

Fig. 1 Unforced case, streamwise distribution of the wake parameters:
solid line theory and dashed line approximation of the experimental
data.
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Fig.2 Theoretical (——) andexperimental (symbols)data;dashed line
undisturbed � ow: f = 40 Hz and "0 = 1%.

Fig.3 Theoretical (——) andexperimental (symbols)data;dashed line
undisturbed � ow: f = 80 Hz and "0 = 3.43%.

is signi� cant and that there is good agreement between the theoret-
ical and experimental data. The calculations also revealed that the
mean velocity pro� le remains self-similar. Figure 2 of the present
paper corresponds to Fig. 4 in Ref. 11, and both of them demon-
strate agreementwith the experimentaldata.The latter indicatesthat
the speci� c normalization of eigenfunctions used in Ref. 11 leads
to N .X / ¼ 0 in Eq. (14), and both theories could provide close
results. In the general case, the solution of Eq. (14) for the am-
plitude function a.X/ strongly depends on the eigenfunction nor-
malization, and the effects of nonparallel � ow must be taken into
account.

Comparisons with experimental data for the wake in the pres-
ence of a coherent signal of "0 D 3:43% and f D 80 Hz are shown
in Fig. 3 (corresponds to Fig. 7 in Ref. 11). The agreement be-
tween theoretical and experimental data is relatively poor for the
growth parameter. This might be attributed to the closure (2)
for the incoherent Reynolds stresses. It follows from the exper-
imental data (Fig. 2 in Ref. 11) that the latter cannot be pre-
sented as the mean velocity derivative with a constant coef� -
cient ºt far downstream, past the neutral point of the coherent
disturbance.

Fig.4 Forced case, Reynoldsstress distributions; f = 80Hz, "0 = 3.43%:
a) Åx = 60, b) Åx = 128, c) Åx = 207, d) Åx = 229, e) Åx = 252, and f ) Åx = 298.

Fig. 5 Variation of the local Strouhal number vs scaled streamwise
coordinate: f = 80 Hz and "0 = 3.43%.

The effect of the coherent signal on the wake is discussed in
Ref. 7. It dependson the behaviorof the coherentReynolds stresses
(Fig. 4). At the beginning of the development, the Reynolds stress
of the coherent signal is similar to the incoherent one [Eq. (2)] and
augments the � ow spreading. Marasli et al.7 pointed out that ini-
tially the rate of growth is nearly linear along x ; then a break in the
slope occurs. The local Strouhal number f L0=U1 at this point is
about 0.22. This value is close to the neutral point for the coherent
disturbance. Behind the neutral point, the coherent Reynolds stress
changes its sign, and the slope of the growth parameter G becomes
smaller than in the unforced wake. As the coherent disturbance de-
cays farther downstream, the effect of the coherent Reynolds stress
is reduced, the turbulent diffusion process regains its dominance,
and the growth parameter starts increasing again.

The variation of the local Strouhal number vs the scaled coordi-
nate f x=U1 is shown in Fig. 5. The calculations give the neutral
point at Nx ¼ 150. f x=U1 ¼ 7:5/, and the local Strouhal number is
about 0.22, as observed in the experiments.7

The effect of the forcing amplitude on the growth parameter is
given in Fig. 6.
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Fig. 6 Calculated effect of the disturbance amplitude on the growth
parameter: f = 80 Hz.

Conclusions
The triple decompositionmethod providesan adequate approach

to analysis of the experimental data, where the coherent signal is
extracted from the total signal by means of phase-locked measure-
ments. The governing equations (3) for the coherent disturbances
spell out that the interactionbetween the coherent and random com-
ponents might be important, and it should be treated somehow. A
closure hypothesisfor these equationsshould be adopted, and it can
be checked only by comparison with experimental data.

The successful comparison of the present theoretical results and
the experimental data related to the mean � ow and to the coherent
signal leads to the following conclusions:

1) The Newtonian eddy viscosity model for the coherent signal
provides the quantitative agreement with the experimental data.

2) Interaction between the coherent signal and the random � eld
is important.

3) The � ow divergence must be taken into account to provide a
correct comparison of theoretical and experimental data.

4)The feedbackof thedisturbancesto themean � owis signi� cant,
and it can be taken into account via coherent Reynolds stresses.

Appendix: Numerical Methods
The numerical procedure to treat Eqs. (3a) and (3b) was

based on the � nite difference scheme used for the boundary-layer
equations.16¡18 We solve Eqs. (3a) and (3b) separately for the upper
.y > 0/ and lower .y < 0/ domains. At the boundary y D 0, the ve-
locityU .x; 0/ is iterated to obtain the coincidenceof the derivatives
@U=@y for the upper and lower domains. The code was tested with
available result for mixing layers and wakes without the feedback
term in Eq. (3b) associated with the coherent Reynolds stresses.

For the stability analysisof the mixing layer we used three codes:
1) Code 1 is based on the two-domain spectral collocation

methodwith Chebyshevpolynomials(seeRef. 19) at � niteReynolds
number.

2) Code 2 has the fourth-order Runge–Kutta scheme at � nite
Reynolds number when two pairs of the decaying fundamental so-
lutions are calculatedfor the upper and lower domains. The general
solution is obtained as a sum of the two fundamental solutions for
each domain, and an orthonormalization procedure is used during
calculation for each pair of fundamental solutions.

3) Code 3 has the fourth Runge–Kutta scheme for the Rayleigh
equation.

The code with the spectral collocationmethod provides a map of
eigenvalues® for a prescribedfrequencyand Reynoldsnumber.The
eigenvalue problem is reduced to a generalized matrix eigenvalue
problem of the form AX D ®BX where A and B are the square ma-
trices and X is an eigenvector.The problem was solved by means of
a standard routine from the Numerical Algorithms Group or Inter-
national Mathematical and Statistical Library FORTRAN libraries.
The methodwas realizedwith 80Chebyshevpolynomialsin two do-
mains: ¡200 · y · 0 and 0 ¸ y ¸ 200. Because the Reynolds num-
ber is suf� ciently high, the code provides an initial eigenvalue for
the Rayleigh equation. If the Reynolds number is � nite, the code
providesan initial eigenvaluefor code 2. Comparisonsof the eigen-

values obtained from these three stability codes (up to 4–5 � gures
in the eigenvalues) served as veri� cation of the codes.

In addition, two codes were prepared for the analysis of the slow
diverging phenomenon:

1) This code is based on the inviscid equations similar to Ref. 3.
2) This code is based on the equations with a � nite Reynolds

number as described in this paper.
Repeating the results from Ref. 3 for the mixing layer � ow tested

the � rst code.Afterward, theseresultswereobtainedwith the second
code,when the Reynoldsnumber was chosen to be suf� ciently high.
Finally, the second code was used for the analysis at � nite Reynolds
numbers.
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