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Harmonic Perturbations in Turbulent Wakes
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A theoretical model of harmonic perturbations in far turbulent wakes is considered. The proposed model is
based on the triple decomposition method. It is assumed that the instantaneous velocities and pressures consist
of three distinctive components: the mean (time-averaged), the coherent (phase-averaged), and the random (tur-
bulent) motion. The interaction between incoherent turbulent fluctuations and large-scale coherent disturbances
is incorporated by means of a Newtonian eddy viscosity model. For high-amplitude perturbations, the nonlinear
feedback to the mean flow is taken into account by means of the coherent Reynolds stresses. The equations for
the mean flow are coupled with the linearized equations for the disturbances, taking into account the mean flow
nonparallel effects. The model resolves uncertainties noted in previous theories and provides a correct comparison
with available experimental data. The effect of the harmonic perturbations on the turbulent wake growth at high

amplitudes is investigated as well.

Nomenclature
A = vector function of the direct problem
a(X) = slow amplitude function of the coherent
perturbation
B = vector function of the adjoint problem
f = frequency, Hz
G = growth parameter, LoU, /6u,
H,, Hy, H,, = matrices4 x4
H,, H;
L, = half-width of the wake
D = instantaneous pressure
Re = Reynolds number, U,.0 /v,
t = time
U = mean (time-averaged) streamwise velocity
U’ = aU/dy
Uy = freestream velocity
u = instantaneous streamwise velocity
Uo = centerline velocity deficit
Vv = mean (time-averaged) vertical
velocity component
VO = 871 \%
v = instantaneous vertical velocity
X = slow variable, ex
X = streamwise coordinate
X = dimensionless coordinate, x /20
y = vertical coordinate
z = spanwise coordinate
o = wave number of the coherent perturbation
£ = small parameter characterizing
the flow divergence
& = amplitude parameter, U/ Uso
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n = dimensionless coordinate,y/L

0 = momentum thickness

v, = eddy viscosity of the undisturbed flow
® = frequency of the coherent perturbation
~ = coherent (phase-averaged) contribution
' = random contribution

() = phase averaging

- = time averaging

* = Hermitian adjoint matrix

Subscripts

i,J = coordinatesx, y

max = maximum value of the coherent component

at specific coordinate x

Introduction

TUDIES of large organized motions in turbulent flows have a

long history and demonstrate that large-scale vortices originate
from flow instabilities and that excitation of time-periodic large
coherent structures in turbulent shear flows may serve as a method
of flow control. Flow instabilities may cause small disturbances to
be amplified and, in turn, provide feedback to the basic flow. A
detailed discussion of this phenomena and a related bibliography
are given by Ho and Huerre.!

Experiments with harmonic perturbationsintroduced into turbu-
lent mixing layers and wakes revealed that the flows are highly
susceptible to the disturbances?® The link between the perturba-
tion dynamics and stability theory has been demonstrated by Gaster
etal.’ (mixing layer), Wygnanskietal.,* Cimbalaet al.,* and Marasli
etal.® (far wake flow).

The triple decomposition method, where the instantaneous ve-
locities and pressure are considered as sums of three distinctive
components,mean (time-averaged), coherent (phase-averaged), and
random (incoherentturbulent) motion, is an appropriate method for
analyzing a coherent signal in a turbulent flow. The equations for a
coherent signal in a turbulent flow were derived by Reynolds and
Hussain® and contain new unknown terms that correspond to oscil-
lations of the background Reynolds stresses caused by the organized
wave. These terms reflect the existence of an interaction between
the coherent signal and the random field. As a first approximation,
the interactionmay be neglected,and the linearized problem may be
reduced to the Rayleigh equation with a prescribed mean velocity
profile (the effectof molecular viscosityis consideredas negligible).

Inasmuch as free shear flows (such as jets, wakes, and mixing
layers) spread rapidly, it is necessary to take into account the flow
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divergencefor a correctcomparison of theoretical and experimental
data for growthrates and overall amplification. Gasteret al.> carried
out an analysis of coherent perturbations in a mixing layer within
the scope of the Rayleigh equation. They included flow divergence
in an attempt to predict the overall growth. Nevertheless, the theory
overpredicted the amplification by two- to threefold.

Marasli et al.® emulated the interaction between the coherent per-
turbation and the turbulent wake field via the introduction of eddy
viscosity and considerationof the Orr-Summerfield equation for the
coherentsignal. Flow divergence effects were taken into accountas
well. The analysis in both the aforementioned theoretical models
was based on the mean flow velocity profile that was obtained as an
approximation to the experimental data.

It follows from the experiments that the nonlinear effect of the
feedback from the disturbances to the mean flow might be very
significant, and a self-consistenttheory has to take it into account.
Cohen et al.!” considered the feedback from harmonic perturba-
tions to the mean flow of a mixing layer. The theoretical model was
basedon a so-called quasi-parallelapproach. The Reynolds stress of
the coherent signal was calculated using a solution of the Rayleigh
equation, and the disturbance amplitude was calculated in accor-
dance with the growth rate obtained from the Rayleigh equation.
Because the self-similar velocity profile was obtained as an approx-
imation to the experimental data,? it was necessary to find only
the mixing layer thickness as a function of the downstream coordi-
nate. The equation for the mixing layer scale follows from the inte-
gral momentum equation, where the spreading rate is governed by
the coherent Reynolds stresses. The results'® showed an agreement
between the theoretical and experimental data.’?

Marasli et al.!! applied the same approach to the analysis of the
feedback from a coherent signal to the mean flow of a turbulent
wake. The main difference involved taking into consideration the
interactionof the coherentsignal and turbulenceby means of an eddy
viscosity model. The theoreticalresults'! also showed an agreement
with experimental data.® However, one should keep in mind that the
quasi-parallel approach suffers from an ambiguity of the linear so-
lution normalization. The solution of the Orr-Sommerfeld equation
(and the Rayleigh equation) depends on the downstream coordi-
nate as a parameter, and an undetermined complex function of the
downstream coordinate appears. It must be defined in some way
or another. The normalization of the eigenfunction influences the
resulting level of the Reynolds stresses, as well as the final com-
parison of the theory with the experimental data. The normalization
adopted in the aforementioned papers'®!! was not stated. Accord-
ing to J. Cohen and V. Levinski (private communication, 1997), the
value of the disturbance stream function at the centerline was used
to normalize the eigenfunctions of the linear problem.

Becausethe divergenceof the mean flow is taken into account, the
uncertainty in the eigenfunction normalization becomes resolved.
Reau and Tumin'? proposed a model for the analysis of a coher-
ent signal in a turbulent mixing layer. A Newtonian eddy viscosity
model was used to incorporate the interaction between incoher-
ent turbulent fluctuations and large-scale coherentdisturbances. For
high-amplitude perturbations, the nonlinear feedback to the mean
flow was taken into account by means of the coherent Reynolds
stresses, and the flow divergence was taken into accountas well. The
resultdemonstrated agreement with availableexperimentaldata and
revealed the possibility of a negative spreading rate of the mixing
layer, as observedin the experiments of Weisbrot and Wygnanski >

The objective of the present work is to apply the proposed
method'? to the analysis of a coherentsignal in far turbulent wakes.

Governing Equations

Itis assumed that the instantaneousvalue of a parameterg (x, y, 2,
t) (velocitiesand pressure) consists of the three distinctcomponents

q(x,y,2,) = Q(x,y) +G(x,y, 1) +q'(x,y,z,1) (1)

where Q is the mean (time-averaged) value, g is the coherent (phase-
averaged) contribution of the organized wave, and ¢’ stands for
the random (turbulent) motion. After substituting Eq. (1) into the
Navier-Stokes equations and phase and time averaging, the equa-
tions for the mean flow and the organized wave can be obtained.”

We assume that the effects of molecular viscosity are negligible.
The boundary-layer approximation is assumed for the mean-flow
equation, and we invoke closure by means of the eddy viscosity v,:
— oU
uv' = —y,— 2)
ay
where the overbar stands for the mean (time-averaged) value.
The mean-flow equations are written in conventional notation as
follows:

oU A%
— 4+ —=0 (3a)
ax y
U AU dav o> 93U
EAE VAL A L .4 (3b)
0x dy dy 0x 0y?

Equation (3b) contains coherent Reynolds stresses and, there-
fore, there is a possibility for feedback from the coherent signal
to the mean flow. To solve Eqgs. (3a) and (3b), we need to de-
fine a velocity profile U (xy, y) at x = x;, and boundary conditions
at y — +oo(U — U,,). Although we consider a small-deficit far
wake, we do not linearize the momentum equation because we
want to utilize the solver developed for the mixing layer problemin
Ref. 12.
The equations for the organized waves contain the new terms’

Fj = (u;u}) - ul’u’, “)
The new terms represent oscillations of the incoherent Reynolds
stresses caused by the organized wave. They are responsible for the
interactionof a coherentsignal with the randomfield. Because of the
latter terms, we need to invoke an hypothesisto close the equations.
If we assume that 7;; =0, the linearized equations for organized
waves are reduced to the Rayleigh equation. According to Ref. 9,
we adopt the Newtonian eddy viscosity model

- ou; o,
="\ T+ 5

i ”’(ax., + axi) )
Making use of Eq. (5), we obtain equations for a coherent signal. In
linearized form, they are written as follows:
du v
—_— 4 — = 6a
ax  dy (62)
ou ou ou
- +
at 0x ay 0x ay

19p 2a 9%
__1ldp gu  9u 6b
pax+v'(8x2+8y2 (6b)
v v v oV oV
LU R UL LAY A4
at 0x ay 0x ay
19p 3?0 9%
= ———+u|l—=+— 6c
o 0y V’(axz 0y? (6c)

Equations (6a-6¢) should be completed by the boundary conditions
at y — Foo (i1, v, p — 0).

Linear Analysis: Slowly Diverging Flow

In what follows, we use the momentum thickness 6 as the length
scale and U, as the velocity scale. We introduce the vector function

u
p
A= v o
di  9v
ay  0dx
and rewrite Eq. (6) in the following form:
0A 0A A
_+H10_:H11A+H2_+8H3A (8)
ay at ax
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where the matrix Hj is associated with the terms that originated
from a slow divergence of the mean flow,

0 0 0 0 0 0 0 1
0 010 0 0 0 0
HIOZ ) Hll:

0 0 0 0 0 0 0 0
—Re 0 0 O 0 0 URe 0
0 0 1 0
0 0 —-U —Re!

H, = —1 0 0 0
URe Re 0 0
0 0 0 0
d Vi
Vor=+0(e) 0 —8—0 0
Hy = Y ©)
0 0 0 0
oU d
a—XRe 0 ReVOa—x VORE

where a slow variable X = ex appearsin Hs,componentV,=¢"'V,
and velocity U =U (X, y).
We are looking for a solution of the form

Ax, X, y,t)= exp|:i / adx — ia)ti| {a(X)A (X, y)

+eAs(X, )+ ) (10)

To leading orders of ¢, we obtain the conventional system of linear
stability theory:

3A
a—' =H A, +iaHA, (11)
¥y

where H, = Hy, +iwH,o. We must complete the equations with the
boundary conditions of the decaying solution at y — 3=00. The sys-
tem (11) may be reduced to the Orr-Sommerfeld equation for the
third component of the vector A;. The coefficients in Eq. (11) are
slow functions of the variable X, and the problem of consistentnor-
malization for the quasi-parallel solution A, arises. The ambiguity
is resolved through consideration of the next-order equations.
In the next order, we have an inhomogeneous system:

82—HA—'(J(HA— aHA-}—Hal—f- Hy;A, (12)
= i = — aH,— +a
ay e T ax 29X 2

The solvability conditionof the system (12) will be the orthogonality
of the right-hand side to the solution B of the adjoint problem:

OB
—=~ = HB—iaH;B (13)
y

with the boundary conditions of the decaying solutionat y — 3-o0.
The overbarin Eq. (13) stands for the complex conjugate. We write
the solvability condition for Eq. (12) in the following form:

d_a__N(X) MX—f+wHABd
dX_ aM(X)’ ( )_ . ( 2441, )y

+00 9A +00
N<X>=f (Hza—X‘,B)derf (HyA,, B)dy

(14)

One can show that a(X) A, (X, y) is independent of a specific nor-
malizationof A (X, y) at differentlocationsof X. Thisis onereason
why we must take the flow divergence into account. The system of
equations (3), (11), and (14) was solved numerically.

Results and Discussion

In this section we present comparisons of experimental data
with the proposedtheoreticalmodel. For all cases, the initial velocity
profile and the disturbance amplitude are defined at x = x /26 = 60.
The Reynolds number Re, based on the momentum thickness 6, the
freestream velocity Uy, and the eddy viscosity, is equal to 31. The
eddy viscosity v, is estimated from the experimentaldataas 5 x 1074
m?/s (see Ref. 6).

Measurements of the unforced flow* showed that, far from a wake
generator, the mean flow reaches its self-preserving state with a
velocity profile of the form (for more physical details of the self-
preserving state see Refs. 13-15)

6,7,11

Ux,n) = Us — uy(x)h(n) 1s)

The following approximation of the function /(n) has been
suggested’:

h(n) = sech?(0.78n + 0.101%)

It follows from the experiments that the velocity deficit and the
wake half-width are described by the equations

(Uss/uo)* = (2/ WZx),

where W, and A, are constants. For the wake behind a flat plate,
Wo =1.676 and Ay =0.2995. The velocity profile (15) was used as
the initial data in the solution of Egs. (3a) and (3b).

Results for the unforced case and their comparisons with the
approximation of the experimental data are given in Fig. 1 (the
numerical methods are described in the Appendix). As shown, the
theoretical mean velocity profile is self-similar, as observed in the
experiments. The theory slightly underpredicts the coefficient W,
and overpredicts Ag.

Marasli et al.® introduced the growth parameter G given by

(Lo/6)* = (2A2%)

G = LoUy /Ouy = (20/Wy)x

which characterizesspreading of the mean flow. Figure 1 also shows
the theoretical growth of the parameter G. The slight discrepancy
between theoretical results and the approximated experimental data
might be caused by the effect of the initial conditions, which were
defined by Eq. (15) and are not accurate at x = 60.

In the following analysis of perturbations, we restrict ourselves
to the sinuous mode only. Figure 2 shows the results for the wake
subjectedto low-amplitude, &y = 1%, disturbancesat a frequency of
40 Hz. We define the amplitude of the disturbanceas gy = Upax / Uoo-
(Note that in the experiments®’-!! it was defined as i, /g.) One
can see that the effect of the coherentsignal on the growth parameter
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Fig.1 Unforced case, streamwise distribution of the wake parameters:
solid line theory and dashed line approximation of the experimental
data.
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Fig.2 Theoretical——) and experimental (symbols) data; dashed line
undisturbed flow: f =40 Hz and g = 1%.
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Fig.3 Theoretical——) and experimental (symbols) data; dashed line
undisturbed flow: f =80 Hz and ¢y = 3.43 %.

is significant and that there is good agreement between the theoret-
ical and experimental data. The calculations also revealed that the
mean velocity profile remains self-similar. Figure 2 of the present
paper corresponds to Fig. 4 in Ref. 11, and both of them demon-
strate agreement with the experimentaldata. The latterindicates that
the specific normalization of eigenfunctions used in Ref. 11 leads
to N(X)~0 in Eq. (14), and both theories could provide close
results. In the general case, the solution of Eq. (14) for the am-
plitude function a(X) strongly depends on the eigenfunction nor-
malization, and the effects of nonparallel flow must be taken into
account.

Comparisons with experimental data for the wake in the pres-
ence of a coherent signal of &g =3.43% and f = 80 Hz are shown
in Fig. 3 (corresponds to Fig. 7 in Ref. 11). The agreement be-
tween theoretical and experimental data is relatively poor for the
growth parameter. This might be attributed to the closure (2)
for the incoherent Reynolds stresses. It follows from the exper-
imental data (Fig. 2 in Ref. 11) that the latter cannot be pre-
sented as the mean velocity derivative with a constant coeffi-
cient v, far downstream, past the neutral point of the coherent
disturbance.

-(uv)

543241012345 54321012345
n n

Fig.4 Forced case, Reynoldsstress distributions;f=80Hz, ) =3.43%:
a)x¥=60,b)x =128,c) ¥ = 207,d) ¥ = 229, ¢) ¥ = 252,and f) X = 298.
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Fig. 5 Variation of the local Strouhal number vs scaled streamwise
coordinate: f = 80 Hz and ¢ = 3.43 %.

The effect of the coherent signal on the wake is discussed in
Ref. 7. It depends on the behavior of the coherent Reynolds stresses
(Fig. 4). At the beginning of the development, the Reynolds stress
of the coherent signal is similar to the incoherentone [Eq. (2)] and
augments the flow spreading. Marasli et al.” pointed out that ini-
tially the rate of growth is nearly linear along x; then a break in the
slope occurs. The local Strouhal number fL,/U,, at this point is
about 0.22. This value is close to the neutral point for the coherent
disturbance. Behind the neutral point, the coherent Reynolds stress
changesits sign, and the slope of the growth parameter G becomes
smaller than in the unforced wake. As the coherentdisturbance de-
cays farther downstream, the effect of the coherent Reynolds stress
is reduced, the turbulent diffusion process regains its dominance,
and the growth parameter starts increasing again.

The variation of the local Strouhal number vs the scaled coordi-
nate fx/U, is shown in Fig. 5. The calculations give the neutral
point at x ~ 150( fx /Uy & 7.5), and the local Strouhal number is
about 0.22, as observed in the experiments.

The effect of the forcing amplitude on the growth parameter is
given in Fig. 6.
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Fig. 6 Calculated effect of the disturbance amplitude on the growth

parameter: f = 80 Hz.

Conclusions

The triple decomposition method provides an adequate approach
to analysis of the experimental data, where the coherent signal is
extracted from the total signal by means of phase-locked measure-
ments. The governing equations (3) for the coherent disturbances
spell out that the interactionbetween the coherentand random com-
ponents might be important, and it should be treated somehow. A
closure hypothesis for these equations should be adopted, and it can
be checked only by comparison with experimental data.

The successful comparison of the present theoretical results and
the experimental data related to the mean flow and to the coherent
signal leads to the following conclusions:

1) The Newtonian eddy viscosity model for the coherent signal
provides the quantitative agreement with the experimental data.

2) Interaction between the coherent signal and the random field
is important.

3) The flow divergence must be taken into account to provide a
correct comparison of theoretical and experimental data.

4) The feedbackof the disturbancesto the mean flow is significant,
and it can be taken into account via coherent Reynolds stresses.

Appendix: Numerical Methods

The numerical procedure to treat Eqs. (3a) and (3b) was
based on the finite difference scheme used for the boundary-layer
equations.'®~'® We solve Eqs. (3a) and (3b) separately for the upper
(y > 0) and lower (y < 0) domains. At the boundary y =0, the ve-
locity U (x, 0) is iterated to obtain the coincidenceof the derivatives
dU /dy for the upper and lower domains. The code was tested with
available result for mixing layers and wakes without the feedback
term in Eq. (3b) associated with the coherent Reynolds stresses.

For the stability analysis of the mixing layer we used three codes:

1) Code 1 is based on the two-domain spectral collocation
method with Chebyshev polynomials(see Ref. 19) at finite Reynolds
number.

2) Code 2 has the fourth-order Runge-Kutta scheme at finite
Reynolds number when two pairs of the decaying fundamental so-
lutions are calculated for the upper and lower domains. The general
solution is obtained as a sum of the two fundamental solutions for
each domain, and an orthonormalization procedure is used during
calculation for each pair of fundamental solutions.

3) Code 3 has the fourth Runge-Kutta scheme for the Rayleigh
equation.

The code with the spectral collocation method provides a map of
eigenvaluesw fora prescribed frequency and Reynolds number. The
eigenvalue problem is reduced to a generalized matrix eigenvalue
problem of the form AX =« BX where A and B are the square ma-
trices and X is an eigenvector. The problem was solved by means of
a standard routine from the Numerical Algorithms Group or Inter-
national Mathematical and Statistical Library FORTRAN libraries.
The method was realized with 80 Chebyshev polynomialsin two do-
mains: —200 <y <0 and 0 > y > 200. Because the Reynolds num-
ber is sufficiently high, the code provides an initial eigenvalue for
the Rayleigh equation. If the Reynolds number is finite, the code
provides an initial eigenvalue for code 2. Comparisons of the eigen-

values obtained from these three stability codes (up to 4-5 figures
in the eigenvalues) served as verification of the codes.

In addition, two codes were prepared for the analysis of the slow
diverging phenomenon:

1) This code is based on the inviscid equations similar to Ref. 3.

2) This code is based on the equations with a finite Reynolds
number as described in this paper.

Repeating the results from Ref. 3 for the mixing layer flow tested
the first code. Afterward, theseresults were obtained with the second
code, when the Reynolds number was chosen to be sufficiently high.
Finally, the second code was used for the analysis at finite Reynolds
numbers.
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